Centre de Recherches Nucléaires de Strasbourg, pour l'intérêt qu'il a porté à ce travail. Nos remerciements vont également à Monsieur Friedt pour l'enregistrement des spectres Mössbauer ainsi que pour les nombreuse et utiles discussions.

Références

Brändén, C. I. (1963). Acta Chem. Scand. 17, 759.
Goubeau, J. \& Schultz, P. (1958). Z. Phys. Chem. 14, 19. Greenwood, N. N. \& Ruddick, J. N. R. (1967). J. Chem. Soc. (A), p. 1679.

Herber, R. H. (1966). Annu. Rev. phys. Chem. 17, 261.
Herber, R. H. \& Parisi, G. H. (1966). Inorg. Chem. 5, 769.
Moras, D., Mitschler, A. \& Weiss, R. (1968a). Chem. Com. 1, 26.
Moras, D., Mitschler, A. \& Weiss, R. (1968b). Acta Cryst. B25, 1720.
Nakamoto, R. (1963). Infrared Spectra of Inorganic and Coordination Compounds, p. 112. New York: John Wiley.
Rhodes, E., O’Neal, W. L. \& Spijkerman, J. J. (1966). NBS Technical Note 404, p. 108.
Sheldon, J. C. \& Tyree, S. Y. (1958). J. Amer. Chem. Soc. 80, 4775.

The Crystal Structure of $\mathbf{N b}_{2} \mathbf{S e}^{*}$

By B. R.Conard L.J. Norrby \dagger and H.F. Franzen

Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa, U.S.A.
(Received 8 July 1968)

Abstract

The crystal structure of $\mathrm{Nb}_{2} \mathrm{Se}$ has been determined from single-crystal X-ray diffraction data. The compound crystallizes in the monoclinic space group $C 2 / m$ with unit-cell dimensions: $a=13 \cdot 992$, $b=3.422, c=9.283 \AA, \beta=91.76^{\circ}$. The unit cell contains eight formula units. Refinement of the structure was performed by least-squares treatment of positional parameters and anisotropic temperature factor coefficients with three-dimensional data. All niobium atoms have distorted cubic coordination with additional near neighbors adjacent to the cube faces. The selenium atoms are bonded to between five and six niobium atoms. There is no selenium-selenium bonding in the compound. The similarities and differences between $\mathrm{Nb}_{2} \mathrm{Se}$ and other metal-rich chalcogen compounds such as $\mathrm{Nb}_{21} \mathrm{~S}_{8}, \mathrm{Ti}_{5} \mathrm{Te}_{4}$ and $\mathrm{Ti}_{2} \mathrm{~S}$, are discussed.

Introduction

The monoselenide region of the niobium-selenium system has been investigated by Brixner (1962), by Revolinsky, Brown, Beerntsen \& Armitage (1965), by Schäfer \& Fuhr (1965), and by Selte, Bjerkelund \& Kjekshus (1966). The region $\mathrm{Se} / \mathrm{Nb}<1$, however, has received relatively little attention. Selte \& Kjekshus (1963) reported a phase, $\mathrm{Nb}_{5} \mathrm{Se}_{4}$, isostructural with $\mathrm{Ti}_{5} \mathrm{Te}_{4}$ (Grønvold, Kjekshus \& Raaum, 1961). They indexed all lines on the powder pattern of $\mathrm{Nb}_{5} \mathrm{Se}_{4}$ on a tetragonal basis with parameters: $a=9.871, c=3.4529$ \AA. No other compounds have been reported below the ratio $\mathrm{Se} / \mathrm{Nb}=0.8$.

The application of high temperature techniques has been successful in the preparation of many metal-rich chalconides ($c f$. Franzen, Smeggil \& Conard, 1967). The crystal structures of these compounds have been consistent with an interpretation of the bonding in mono- and lower chalconides of transition metals (Franzen, 1966). Comparisons of the metal-rich com-

[^0]pounds of the Group IV transition metals with those of Group V have suggested that the roles of the chalcogen in bonding in these groups of compounds are somewhat different. For example, compare $\mathrm{Ta}_{2} \mathrm{~S}$ (Franzen \& Smeggil, 1969) with the $\mathrm{Ti}_{2} \mathrm{~S}$ structure type (Owens, Conard \& Franzen, 1967).

The purpose of the present work was to investigate the metal-rich region of the $\mathrm{Nb}-\mathrm{Se}$ system, with the use of high temperature preparative techniques, to ascertain whether a metal-rich selenide of niobium could be synthesized, and to determine whether its structure was in accord with the above mentioned ideas concerning bonding in metal-rich chalconides and phosphides.

Experimental

The method of high temperature preparation has been described previously (Franzen, Smeggil \& Conard, 1967). The $\mathrm{Nb}_{2} \mathrm{Se}$ sample was prepared at a final annealing temperature of $1515^{\circ} \mathrm{C}$. The niobium metal was obtained from E.I. Du Pont de Nemours \& Co. The 99.999% selenium was obtained from Alfa Inorganics, Inc.

X-ray investigation of the sample was performed with Guinier powder and Weissenberg single-crystal techniques. For the Weissenberg exposures the crystal
was rotated around the unique axis. The single-crystal X-ray diffraction data used in the structure determination were collected with a Hilger-Watts four circle automatic diffractometer coupled to an SDS 910 computer (Dahm, Benson, Nimrod, Fitzwater \& Jacobson, 1967). Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$), filtered by Zr , was used to measure the integrated intensities of 1563 reflections at $2 \theta<80^{\circ}$. Small corrections (less than 5%) for the non-linearity of the detectur were applied to the strongest observed intensities. With the use of parameters obtained from the single-crystal diffractometer, accurate lattice parameters were determined by a leastsquares treatment of the 2θ values from Guinier powder diffraction patterns obtained at $25^{\circ} \mathrm{C} . \mathrm{Cu} K \alpha$ radiation ($\lambda=1 \cdot 54050 \AA$), filtered by Ni, was used to obtain Guinier patterns. KCl was employed as an internal standard, $a=6 \cdot 2930 \AA$ at $25^{\circ} \mathrm{C}$ (Hambling, 1953). Table 1 contains the $\sin ^{2} \theta$ observed, $\sin ^{2} \theta$ calculated, and the relative intensity of each reflection from the Guinier powder pattern.

> Table 1. Guinier X-ray data for $\mathrm{Nb}_{2} \mathrm{Se}$
> Monoclinic, $a=13 \cdot 992, b=3 \cdot 422, c=9 \cdot 283 \AA, \beta=91 \cdot 76^{\circ}$.

$h k l$	$\sin ^{2} \theta$ (obs)	$\sin ^{2} \theta$ (calc)	I / I_{0}
001	$0 \cdot 00678$	$0 \cdot 00689$	10
200	0.01208	0.01214	10
201	$0 \cdot 01968$	0.01959	5
310	0.07802	0.07798	10
112	0.08171	0.08181	5
311	0.08577	$0 \cdot 08568$	20
312	$0 \cdot 10338$	$0 \cdot 10385$	100
$40 \overline{3}$	$0 \cdot 10713$	0.10718 0.10723	80
312	$0 \cdot 10713$	$0 \cdot 10723$	80
600	$0 \cdot 10957$	$0 \cdot 10918$	100
004	$0 \cdot 10957$	$0 \cdot 11028$	100
601	$0 \cdot 11441$	$0 \cdot 11441$	20
510	$0 \cdot 12639$	$0 \cdot 12651$	1
511	$0 \cdot 13213$	$0 \cdot 13201$	5
313	$0 \cdot 13684$	$0 \cdot 13743$	90
020	$0 \cdot 20252$	$0 \cdot 20266$	70
802	$0 \cdot 21716$	$0 \cdot 21716$	5
620	0.31189	$0 \cdot 31189$	50
621	0.31699	$0 \cdot 31707$	20
225	$0 \cdot 38455$	$0 \cdot 38430$	30

Lorentz and polarization corrections were applied. From photographs ($\times 250$) of the crystal, it was estimated that the shape of the crystal was a parallelepiped with one corner missing, and its size was $88 \times$ $180 \times 60 \mu$. Absorption corrections were made by the
use of a program by Busing \& Levy (1957) adapted to the IBM $360 / 50$ computer. Transmission factors ranged between 0.14 and 0.37 . No extinction corrections were made.

Composition analysis of the sample characterized as $\mathrm{Nb}_{2} \mathrm{Se}$ was performed by igniting the sample to $\mathrm{Nb}_{2} \mathrm{O}_{5}$; the $\mathrm{Se} / \mathrm{Nb}$ ratio was $0 \cdot 44 \pm 0 \cdot 01$. The low value for this ratio, compared with the structurally determined value of $0 \cdot 5$, was probably a result of the presence of a small amount of Nb metal in the $\mathrm{Nb}_{2} \mathrm{Se}$ sample, as evidenced by several faint lines observed in the powder pattern. In powder photographs of other samples lines from $\mathrm{Nb}_{5} \mathrm{Se}_{4}$ were observed together with lines from $\mathrm{Nb}_{2} \mathrm{Se}$. The density of $\mathrm{Nb}_{2} \mathrm{Se}$ was measured by pycnometric techniques.

Crystal data

Nb_{2} Se, F.W. 264.77. Monoclinic, $a=13.992 \pm 0.006$, $b=3.422 \pm 0.001, c=9.283 \pm 0.007 \AA, \beta=91.76 \pm 0.06^{\circ}$, $V=446.8 \AA^{3}, \quad D_{m}=7.8 \mathrm{~g} . \mathrm{cm}^{-3} \pm 0 \cdot 1, \quad Z=8, \quad D_{x}=7.88$ g.cm ${ }^{-3}$. Mo $K \alpha(\lambda=0.7107 \AA) \mu=275 \cdot 2 \mathrm{~cm}^{-1}$. Absent reflections, $h k l$ when $h+k$ odd. Space group $C 2$ (No.5), $C m$ (No. 8), or $C 2 / m$ (No. 12). An intensity distribution analysis indicated $C 2 / m$, and this space group was confirmed by refinement of the structure.

Determination and refinement of the structure

A three-dimensional Patterson synthesis was performed with the use of all data; maxima were observed only at sections $y=0$ and $y=\frac{1}{2}$. The layering in the short axis direction ($b=3.422 \AA$) was consistent with atoms occupying fourfold positions (i) $x, 0, z$ of $C 2 / m$. Accordingly, superposition methods were performed using the $y=0$ section. None of the trial structures obtained in this way refined satisfactorily with the use of the 166 reflections with the largest U values ($c f$. below). As was discovered later, the failure of the trial structure to refine was not the result of an incorrect model, but rather the result of not including in the refinement calculation a set of reflections of relatively low intensity.
Unitary structure factors were obtained from the observed structure factors by a graphical method (Woolfson, 1961). The unitary structure factors were found to depend on k only so far as k was even or odd, i.e. $U(h 0 l)=U(h 2 l)$ and $U(h 1 l)=\mathrm{U}(h 3 l)$, in agreement with the proposed layering in the y direction; accord-

Table 2. Refined atomic parameters for $\mathrm{Nb}_{2} \mathrm{Se}$
The positional parameters and isotropic temperature factor coefficients were refined using 578 reflections of the zero and first levels. The anisotropic thermal parameters were refined using all data. All atoms occupy fourfold positions (i) $x, 0, z$ of space group $C 2 / m . \beta_{12}=\beta_{23}=0$.

	x	z	$\begin{gathered} B \\ \left(\AA^{2}\right) \end{gathered}$	β_{11}	β_{22}	β_{33}	β_{13}
Nb (1)	$0 \cdot 2155$ (1)	$0 \cdot 1251$ (2)	$0 \cdot 43$ (3)	$0 \cdot 00049$ (4)	$0 \cdot 0080$ (8)	$0 \cdot 00128$ (9)	$0.00 ¢ 32$ (4)
Nb (2)	0.0839 (1)	$0 \cdot 3988$ (2)	$0 \cdot 39$ (3)	0.00048 (4)	$0 \cdot 0064$ (8)	$0 \cdot 00115$ (9)	0.00028 (4)
Nb (3)	$0 \cdot 4127$ (2)	$0 \cdot 3491$ (2)	$0 \cdot 58$ (4)	$0 \cdot 00063$ (4)	$0 \cdot 0076$ (8)	$0 \cdot 0020$ (1)	0.00051 (4)
Nb (4)	$0 \cdot 2568$ (1)	$0 \cdot 6228$ (2)	$0 \cdot 32$ (3)	$0 \cdot 00039$ (4)	$0 \cdot 0058$ (8)	0.00098 (9)	0.00015 (4)
Se (5)	$0 \cdot 1410$ (2)	0.8627 (2)	$0 \cdot 44$ (4)	$0 \cdot 00058$ (5)	$0 \cdot 0065$ (8)	0.0015 (1)	0.00023 (5)
Se (6)	$0 \cdot 4253$ (2)	$0 \cdot 8157$ (2)	$0 \cdot 54$ (4)	$0 \cdot 00060$ (5)	$0 \cdot 0077$ (8)	$0 \cdot 0018$ (1)	0.00041 (5)

ingly，only zero and first level data were used to assign phases．A set of eleven signs（Woolfson，1961）was determined with a Harker－Kasper inequality（Harker \＆ Kasper，1948）．The triple product sign relationship pro－ posed by Zachariasen（1952），

$$
\begin{equation*}
s(\mathbf{h}) \simeq s\left\{\sum_{\mathbf{h}^{\prime}} s\left(\mathbf{h}^{\prime}\right) s\left(\mathbf{h}-\mathbf{h}^{\prime}\right)\right\}, \tag{1}
\end{equation*}
$$

was used to extend the assignment of signs．In the case of an end－centered monoclinic crystal，the signs of two structure factors can be arbitrarily assigned（Haupt－

Table 3．Observed and calculated structure factors for $\mathrm{Nb}_{2} \mathrm{Se}$

ジッニッが

mann \＆Karle，1953）；$U_{3,1,2}$ and $U_{\overline{6}, 0,1}$ were taken to be positive．

After 25 signs had been determined with the use of the eleven signs，four electron density maps $(y=0)$ were Fourier synthesized．These four maps resulted from assignment of signs to the two symbols used in the symbolic addition procedure．All maps had peaks in basically the same relative positions；one was selected as a trial structure on the basis of its similarity with a map obtained by the superposition method．Struc－ ture factors were then assigned signs and added to those originally used in groups of $10-20$ ，in repeated attempts to refine the trial structure discussed above， and to obtain new electron density sections at $y=0$ ． Finally，after accepting 149 reflections，the structure refined to a reliability index

$$
R \equiv \frac{\Sigma\left|\left|F_{o}\right|-\left|F_{e}\right|\right|}{\Sigma\left|F_{o}\right|}=0 \cdot 14 .
$$

The positional parameters and isotropic thermal par－ ameters of the six independent atoms of the structure were refined by the computer program ORFLS（Busing， Martin \＆Levy，1962）with 578 reflections of the zero and first levels，and the 020 reflection．The $h 0 l$ and $h 1 /$ data were accepted as＇observed＇provided that $\sigma(I) / I<0 \cdot 4$ ［ $\sigma(I)$ obtained as discussed below］．The atomic scattering factors used were those given by Hanson，Herman，Lea \＆Skillman（1964）；both real and imaginary compo－ nents of anomalous dispersion were included for Nb ， $-2 \cdot 1$ and $0 \cdot 9$ ，respectively，and for $\mathrm{Se},-0 \cdot 1$ and $2 \cdot 4$ ， respectively（values given are for $\sin \theta / \lambda=0 \cdot 0$ ，Inter－ national Tables for X－ray Crystallography，1962）．The function minimized in the least－squares procedure was $\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ ，where F_{o} and F_{c} are observed and cal－ culated structure factors and $w=1 / \sigma^{2}\left(F_{o}\right)$ ．The $\sigma\left(F_{o}\right)$ was initially obtained from the following relationship

$$
\begin{align*}
\sigma^{2}\left(F_{o}\right) & =\frac{A^{*} \mathrm{Lp}}{4}\binom{I_{\mathrm{B}}+I_{T}}{I_{T}-I_{\mathrm{B}}}+\frac{\mathrm{Lp}\left(I_{T}-I_{\mathrm{B}}\right)}{4 A^{*}} \sigma^{2}\left(A^{*}\right) \\
& +\begin{array}{c}
\left(I_{T}-I_{\mathrm{B}}\right) A^{*} \\
4 \mathrm{Lp}
\end{array} \sigma^{2}(\mathrm{Lp}) \tag{2}
\end{align*}
$$

where $A^{*}=$ absorption factor， $\mathrm{Lp}=$ Lorentz－polariza－ tion correction factor，$I_{T}=$ total counts，$I_{\mathrm{B}}=$ back－ ground counts，$\sigma^{2}\left(A^{*}\right)=0.0025$ ，and $\sigma^{2}(2 \theta)=0.0004$ ． The last quantity was used to calculate $\sigma^{2}(\mathrm{Lp})$ ．The weighting scheme was checked by plotting $w\left(F_{o}-F_{c}\right)^{2}$ versus F_{o}^{2} and fitting the data to a straight line by a least－squares technique．The initial weights，as calcu－ lated from（2），gave a line with slope $2 \cdot 3$ ．The weights were adjusted so that the straight line of least－squares fit had a slope of $0 \cdot 01$ ．

An unweighted R value of $0 \cdot 105$ was obtained for the 578 reflections after several cycles；for the last cycle all parameter shifts were $<1 \%$ of the estimated stan－ dard deviations of the parameters．The final values of
the parameters and their standard deviations are given in Table 2. The standard deviation of an observation of unit weight,

$$
\begin{equation*}
\left[\Sigma w \Delta^{2} / m-n\right]^{1 / 2}, \tag{3}
\end{equation*}
$$

was 1.03 . In expression (3), w is the revised weight of an observation, Δ is ($F_{o}-F_{c}$), m is the number of observations (578), and n is the number of variables (19). The positional parameters obtained from the refinement described above were used to calculate all structure factors in the zero and first levels, including those observations which had been taken as unobserved, as discussed above. The list of observed and calculated
structure factors are tabulated in Table 3. The reliahility index for these data was $0 \cdot 111$.
Refinement of the structure was also performed with anisotropic thermal parameters by use of all 1563 data (maximum $k=6$). The anisotropic components of the thermal parameters are given in Table 2. The positional parameters obtained in this refinement were the same, within the standard deviations, as those listed in Table 2 . In this case the R value was $0 \cdot 100$, and the 'goodness of fit', as defined by (3), was 0.94 .* Refinements were

[^1]Table 4. Interatomic distances in $\mathrm{Nb}_{2} \mathrm{Se}(\pm 0.003 \AA)$ and angles around Se atoms

Reference atom	Neighbor	No. of neighbors	Distance	
$\mathrm{Nb}(1)$	$\mathrm{Se}(5)$	1	2.618	
	$\mathrm{Se}(5)$	2	$2 \cdot 642$	
	Se (6)	2	$2 \cdot 682$	
	Nb (4)	2	2.923	
	Nb (1)	2	3.074	
	Nb (2)	1	$3 \cdot 197$	
	Nb (3)	1	$3 \cdot 404$	
Nb (2)	$\mathrm{Se}(6)$	2	2.630	
	Nb (4)	2	$2 \cdot 826$	
	Nb (3)	2	2.904	
	$\mathrm{Nb}(3)$	2	2.967	
	$\mathrm{Nb}(2)$	1	3.060	
	$\mathrm{Nb}(4)$	1	$3 \cdot 138$	
	$\mathrm{Nb}(1)$	1	$3 \cdot 197$	
$\mathrm{Nb}(3)$	$\mathrm{Se}(5)$	2	2.701	
	Se (6)	1	2.782	
	Nb (2)	2	2.904	
	$\mathrm{Nb}(4)$	2	2.947	
	Nb (2)	2	2.967	
	$\mathrm{Nb}(1)$	1	$3 \cdot 404$	
	Nb (4)	1	3.411	
$\mathrm{Nb}(4)$	$\mathrm{Se}(5)$	1	$2 \cdot 805$	
	Nb (2)	2	2.826	
	$\mathrm{Nb}(4)$	2	2.857	
	$\mathrm{Se}(6)$	1	2.911	
	$\mathrm{Nb}(1)$	2	$2 \cdot 923$	
	$\mathrm{Nb}(3)$	2	2.947	
	Nb (2)	1	$3 \cdot 138$	
	Nb (3)	1	$3 \cdot 411$	
$\mathrm{Se}(5)$	Nb (1)	1	$2 \cdot 618$	
	Nb (1)	2	$2 \cdot 642$	
	Nb (3)	2	$2 \cdot 701$	
	Nb (4)	1	2.805	
$\mathrm{Se}(6)$	$\mathrm{Nb}(2)$	2	2.630	
	Nb (1)	2	2.682	
	Nb (3)	1	2.782	
	Nb (4)	1	2.911	
Angle	Degrees	Angle		Degrees
$\mathrm{Se}(5)-\mathrm{Nb}(1)$	71.51	Nb (3)-Se(6)-Nb(2)		$66 \cdot 41$
$\mathrm{Se}(5)-\mathrm{Nb}(1)$	80.96	$\mathrm{Nb}(2)-\mathrm{Se}(6)-\mathrm{Nb}(2)$		81.39
$\mathrm{Se}(5)-\mathrm{Nb}(3)$	78.84	$\mathrm{Nb}(1)-\mathrm{Se}(6)-\mathrm{Nb}$ (1)		79.49
$\mathrm{Se}(5)-\mathrm{Nb}(4)$	121.3664.83	Nb (3)-Se(6)-Nb(4)		108.53
$\mathrm{Se}(5)-\mathrm{Nb}(4)$		Nb (2)-Se(6)- Nb (4)		61.09
$\mathrm{Se}(5)-\mathrm{Nb}(3)$	$140 \cdot 53$	$\mathrm{Nb}(3)-\mathrm{Se}(6)-\mathrm{Nb}(1)$		$137 \cdot 04$
$\mathrm{Se}(5)-\mathrm{Nb}(3)$		$\mathrm{Nb}(2)-\mathrm{Se}(6)-\mathrm{Nb}(1)$		73.99
Se(5)-Nb(4)	$\begin{aligned} & 79 \cdot 16 \\ & 64 \cdot 70 \end{aligned}$	$\mathrm{Nb}(1)-\mathrm{Se}(6)-\mathrm{Nb}(4)$		$62 \cdot 86$

also carried out in the acentric space groups. In each case the hypothesis that the acentric structure was correct rather than the centric one could be rejected according to Hamilton's (1965) criterion at the 99.5% confidence level.

For the purpose of checking the correctness of the refinement, a difference electron density synthesis was performed with 578 reflections of the zero and first levels. The synthesis had maxima, corresponding to about 2 electrons at the $y=0$ section; these maxima were all at atomic positions. Interatomic distances and angles, obtained by the use of the Thermal Ellipsoid Plot computer program written by Johnson (1965), are listed in Table 4. Johnson's program was used with Slater's (1964) atomic radii to draw the stereoscopic view of the structure along the b axis. The illustration is presented in Fig. 1.

Description and discussion of the structure

The four independent Nb atoms have similar coordination polyhedra, namely, a distorted cubic arrangement of eight atoms with additional bonded atoms adjacent to the faces of the cube. For example, as shown in Fig.2, the most distorted cubic arrangement is around the $\mathrm{Nb}(1)$ atom which is coordinated by $2 \mathrm{Nb}(1), 2 \mathrm{Nb}(4), 2 \mathrm{Se}(5)$, and $2 \mathrm{Se}(6)$, forming the distorted cube, and $\mathrm{Nb}(2), \mathrm{Nb}(3)$, and $\mathrm{Se}(5)$ are located adjacent to the faces of the cube. The least distorted cubic arrangement is found around $\mathrm{Nb}(4)$.

The coordination polyhedra of the two independent Se atoms are difficult to describe. One can see, however, by comparing angles and distances in Table 4 that the arrangement of Nb atoms around each Se is similar, namely, that each Se atom is bonded to six Nb atoms. In addition, it is noted that the Nb atoms are not arranged so as to spatially surround the Se atoms; rather, in the vicinity of each Se there are relatively large regions which are unoccupied by either Nb or Se atoms. Referring to Fig.2, these 'holes' occur on the twofold axes.

The Nb_{2} Se structure-type is new, but the metal and non-metal environments in $\mathrm{Nb}_{2} \mathrm{Se}$ are similar to those
in $\mathrm{Nb}_{5} \mathrm{Se}_{4}$, which has the $\mathrm{Ti}_{5} \mathrm{Te}_{4}$ type structure (Selte \& Kjekshus, 1963). The coordination polyhedra of the non-metal in $\mathrm{Nb}_{2} \mathrm{Se}$ and $\mathrm{Nb}_{5} \mathrm{Se}_{4}$ are related to those observed in $\mathrm{Nb}_{3} \mathrm{Se}_{4}$ (Selte \& Kjekshus, 1964), perhaps suggesting a basis for understanding the relationship of metal-rich chalconides to mono- and higher chalconides.
The tendency for metal atoms to form body-centered coordination polyhedra has been correlated with the promotion energies from the ground electronic states to the $s d^{n-1}$ configurations (n denotes the number of valence electrons) in the gaseous atoms (Brewer, 1963). The metal coordination in metal-rich compounds has recently been discussed from this point of view (Franzen, Smeggil \& Conard, 1967). The $\mathrm{Nb}_{2} \mathrm{Se}$ structure type provides further corroboration of this correlation, for elemental Nb crystallizes in the b.c.c.structure type, and the Nb atoms in $\mathrm{Nb}_{2} \mathrm{Se}$ are surrounded by eight atoms, both Se and Nb , in distorted cubes.
The $\mathrm{Nb}_{2} \mathrm{Se}$ structure can be compared with the $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ structure (Franzen, Beineke \& Conard, 1968). Fig. 2 shows the $\mathrm{Nb}_{2} \mathrm{Se}$ structure projected along the short axis ($3 \cdot 42 \AA$). Fig. 3 shows the $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ structure also projected along its short axis ($3 \cdot 36 \AA$). There is a mirror plane parallel to the plane of the Figure in each structure. The structural similarity between $\mathrm{Nb}_{2} \mathrm{Se}$ and $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ is outlined by exactly equivalent bold-lined parallelograms in each Figure. In $\mathrm{Nb}_{2} \mathrm{Se}$ the bold parallelogram is almost an asymmetric unit of the structure, whereas in $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ the same parallelogram is only a portion of an asymmetric unit. The projected atom positions in each bold-lined parallelogram are approximately the same with the exception that in $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ there are two projected atom positions which are not present in $\mathrm{Nb}_{2} \mathrm{Se}$, namely, the Nb atom at $z=0$ in the upper right-hand corner and the Nb atom at $z=\frac{1}{2}$ in the lower right-hand corner of the bold-lined parallelogram. It is seen, however, that these two additional projected positions in $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ occur in the 'hole' regions of $\mathrm{Nb}_{2} \mathrm{Se}$. Nonetheless, $\mathrm{Nb}_{2} \mathrm{Se}$ is seen to have a basic structural similarity with $\mathrm{Nb}_{21} \mathrm{~S}_{8}$, and thus with a number of lower chalconides (and, it should be mentioned, phosphides) as well.

Fig. 1. Stereoscopic illustration of the $\mathrm{Nb}_{2} \mathrm{Se}$ structure viewed along the b axis. The box indicates a unit cell.
$\mathrm{Nb}_{2} \mathrm{Se}$ does exhibit, however, some significant differences from other metal-rich transition metal compounds. For example, the $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ structure does not contain regions with non-bonded sul"ur arrangements. On the other hand, while, as is genera' 'ly true of metalrich chalconides, there are no selenium- selenium bonds in the $\mathrm{Nb}_{2} \mathrm{Se}$ structure (the closest $\mathrm{Se}-\mathrm{Se}$ distance is $3.43 \AA$), the Se atoms are, nonetheless, arranged in nonbonded tetrahedra. These tetrahedra share edges so as to form chains of tetrahedra in the \mathbf{b} direction. The non-bonded Se atom arrangements in $\mathrm{Nb}_{2} \mathrm{Se}$ differentiate this structure from the structures of the Group IV transition metal subchalconides and subphosphides, for in all of the Group IV compounds a high degree of coordination (six to nine) of the non-metal by metal atoms is observed. This feature of $\mathrm{Nb}_{2} \mathrm{Se}$ is shared by $\mathrm{Ta}_{2} \mathrm{~S}$ (Franzen \& Smeggil, 1969), for in $\mathrm{Ta}_{2} \mathrm{~S}$ the sulfur atoms are similarly located in a non-bonded fashion in regions of the structure.

On the basis of these and similar observations, the following classification can be made of the metal-rich chalconides of transition metals: Class I refers to group IV transition metal compounds with chalcogen/ metal $(C / M)=0 \cdot 5$, which form with high chalcogen coordination numbers (six to nine); to Class II belong the Group V compounds with $C / M<0.5$ and high chalcogen coordination numbers; and to Class III belong other Group V compounds which have $C / M=0.5$ and lower chalcogen coordination numbers (five to six). In addition, the structures of Class III compounds exhibit regions containing non-bonded chalcogen atoms and regions with extensive metal-metal bonding.

Table 5. Known metal-rich chalconide compounds, listed according to their class (defined in text)
Average chalcogen coordination numbers (C.N.) and calculated chalcogen valences are given.

	Class	Average C.N.	Average calculated valence
$\mathrm{Ti}_{2} \mathrm{~S}$	I	7.7	$4 \cdot 5$
$\mathrm{Ti}_{2} \mathrm{Se}^{(a)}$	I	7.7	-
$\mathrm{Zr}_{2} \mathrm{~S}^{(a)}$	I	7%	-
$\mathrm{Zr}_{2} \mathrm{Se}^{(b)}$	i	$\because 7$	$4 \cdot 3$
$\mathrm{Hf}_{2} \mathrm{~S}^{(c)}$	1	6	$3 \cdot 4$
$\mathrm{Hf}_{2} \mathrm{Se}^{(a)}$	1	6	-
$\alpha-V_{3} S^{(d)}$	II	8	$5 \cdot 0$
$\beta-\mathrm{V}_{3} \mathrm{~S}^{\prime}{ }^{\text {d }}$?	II	8	$5 \cdot 0$
$\mathrm{Nb}_{2 i} \mathrm{~S}_{3}$	II	$7 \cdot 5$	$4 \cdot 1$
$\mathrm{NH}_{2} \mathrm{Se}$	III	6	$3 \cdot 0$
$\mathrm{T}^{\prime} \mathrm{a}_{2} \mathrm{~S}$	III	5	$3 \cdot 0$

References not given in text:
(a) Franzen, Smeggil \& Conard (1967).
(b) F•anzen \& Norrby (1968).
(c) Franzen \& Graham (1966).
(d) Pedersen \& Grønvold (1959).

Table 5 lists all known subchalconides of the Group IV and V transition metals, together with their classes (as defined above), their average chalcogen coordination numbers, and their average chalcogen valences, as given by the Pauling empirical relationship (Pauling, 1960). While these valences are probably not absolutely correct, the trends in the calculated valences clearly are significant in this case.

The coordination numbers and valences of the chalcogens in the various classes strongly suggest an elec-

Fig.2. A unit cell of $\mathrm{Nb}_{2} \mathrm{Se}$ projected on (010). Bold-lined parallelogram contains structural similarities to $\mathrm{Nb}_{21} \mathrm{~S}_{8}$.
tron concentration interpretation of the differences between the classes. All Group IV subchalconides belong to Class I, as would be expected from this viewpoint, since all have the same valence electron concentration. On the other hand, the valence electron concentration is increased if the stoichiometry is unchanged but a Group V element replaces a Group IV element. Since no Group V subchalconides are isostructural with Group IV subchalconides, this replacement appears to result in compounds unstable either with respect to disproportionation into a still lower chalconide (forming a Class II compound) and a higher chalconide, or with respect to a structure type in which the chalcogen contributes fewer electrons to the conduction band (forming a Class III compound).

The authors express their appreciation to D.R.Torgeson for supplying the niobium, to J. Graham for performing initial powder diffraction studies, to J. E. Benson for assistance in obtaining data from the automatic
diffractometer, and to H. Baker for taking photographs of the single crystal.

References

Brewer, L. (1963). Electronic Structure and Alloy Chemistry. Ed. P. A. Beck. New York: Interscienc ? Publishers. Brixner, L. H. (1962). J. Inorg. Nucl. Chem. 24, 257.
Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180. Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). USAEC Report, ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Dahm, D. J., Benson, J. E., Nimrod, D. ${ }^{\prime}$., Fitzwater, D. R. \& JACOBSON, R. A. (1967). USAEC Rept. IS-1701. Franzen, H. F. (1966). J. Inorg. Nucl. Chem. 28, 1575.
Franzen, H. F., Beineke, T. A. \& Conard, B. R. (1968). Acta Cryst. B24, 412.
Franzen, H. F. \& Graham, J. (1966). Z. Kristallogr. 123, 133.

Franzen, h. F. \& Norrby, L. J. (1968). Acta Cryst. B24, 601.

Fig. 3. Approximately one and one-half unit cells of $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ projected on (001). All sulfur atoms are coordinated to six niobium atoms at the corners of trigonal prisms, shown by the dotted lines, and to additional niobium atoms adjacent to rectangular faces of the prisms. The bold-lined parallelogram contains structural similarities to $\mathrm{Nb}_{2} \mathrm{Se}$.

Franzen, H. F. \& Smeggil, J. (1969). Acta Cryst. B25, 1736.

Franzen, H. F., Smeggil, J. \& Conard, B. R. (1967). Mat. Res. Bull. 2, 1087.
Grønvold, F., Kjekshus, A. \& Raaum, F. (1961). Acta Cryst. 14, 930.
Hambling, P. G. (1953). Acta Cryst. 6, 98.
Hamliton, W. C. (1965). Acta Cryst. 18, 502.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040.

Harker, D. \& Kasper, J. S. (1948). Acta Cryst. 1, 70.
Hauptmann, H. \& Karle, J. (1953). Solution of the Phase Problem, I. The Centrosymmetric Crystal. A. C. A. Monograph No. 3. Wilmington: The Letter Shop.
International Tables for X-ray Crystallography (1962). Vol. III, p. 216. Birmingham: Kynoch Press.
Johnson, C. K. (1965). USAEC Report ORNL-3794. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Owens, J. P., Conard, B. R. \& Franzen, H. F. (1967). Acta Cryst. 23, 77.
Pauling, L. (1960). The Nature of the Chemical Bond. 3rd Edition. Ithaca: Cornell Univ. Press.
Pedersen, B. \& Grønvold, F. (1959). Acta Cryst. 12, 1022.
Revolinsky, E., Brown, B. E., Beerntsen, D. J. \& Armitage, C. H. (1965). J. Less-Common Metals, 8, 63.
Schäfer, H. \& Fuhr, W. (1965). J. Less-Common Metals, 8, 375.
Selte, K., Bjerkelund, E. S. \& Kjekshus, A. (1966). J. Less-Common Metals, 11, 14.
Selte, K. \& Kjekshus, A. (1963). Acta Chem. Scand. 17, 2560.

Selte, K. \& Kjekshus, A. (1964). Acta Cryst. 17, 1568.
Slater, J. C. (1964). J. Chem. Phys. 41, 3199.
Woolfson, M. M. (1961). Direct Methods in Crystallography. Oxford: Clarendon Press.
Zachariasen, W. H. (1952). Acta Cryst. 5, 68.

The Crystal Structure of $\mathrm{Ta}_{2} \mathbf{S}^{*}$

By H.F. Franzen and J. G. SmegGil

Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa 50010, U.S.A.
(Received 22 July 1968)

Abstract

The crystal structure of ditantalum sulfide, $\mathrm{Ta}_{2} \mathrm{~S}$, has been determined from single-crystal X-ray diffraction data. The compound crystallizes in the orthorhombic system, space group Pbcm, with unitcell dimensions: $a=7 \cdot 379, b=5 \cdot 574$, and $c=15 \cdot 19 \AA$. The unit cell contains 12 formula units. Refinement of the structure was performed by a least-squares treatment of the positional parameters and the temperature factor coefficients. The $\mathrm{Ta}_{2} \mathrm{~S}$ structure is fundamentally different from other known metalrich chalconide structures. The structure can be viewed as chains of body-centered pentagonal antiprisms of tantalum atoms sharing faces in one direction and interconnected via sulfur atoms in the other two directions.

Introduction

The crystal structures of the sulfides of tantalum have been reviewed by Jellinek (1963). It was concluded that an early claim of the preparation of a subsulfide of tantalum by Biltz \& Kocher (1938) was incorrectly based on powder patterns of a mixture of phases. Preparations at relatively low temperatures (less than about $1000^{\circ} \mathrm{C}$) have generally failed to produce metalrich sulfides such as have been prepared by high-temperature techniques in recent years in the $\mathrm{Hf}-\mathrm{S}$ system (Franzen \& Graham, 1966), in the Ti-S system (Owens, Conard \& Franzen, 1967), and in the $\mathrm{Nb}-\mathrm{S}$ system (Franzen, Beineke \& Conard, 1968). The work reported here was performed with the purpose of extending the application of high-temperature preparation techniques to the $\mathrm{Ta}-\mathrm{S}$ system in order to prepare and determine the structure of a lower sulfide of tantalum.

* Work was performed in the Ames Laboratory of the U.S. Atomic Energy Commission. Contribution No. 2367.

Experimental

The ditantalum sulfide samples were prepared in a manner analogous to that previously described (Owens, Conard \& Franzen, 1967). The sulfur obtained from the American Smelting and Refining Co. was 99.999% pure. The tantalum obtained from the National Research Corporation was 99.99% pure. The final annealing temperature in the case of the $\mathrm{Ta}_{2} \mathrm{~S}$ preparation was $1600^{\circ} \mathrm{C}$. Single-crystal X-ray diffraction data were initially collected with a General Electric spectrogoniometer and nickel filtered $\mathrm{Cu} K \alpha$ radiation. Data were collected for 767 reflections in the range $0^{\circ}<2 \theta \leq$ 160°. A second set of data was collected using a HilgerWatts diffractometer coupled with an SDS(910-IBM) (1401) computer configuration described elsewhere (Dahm, Benson, Nimrod, Fitzwater \& Jacobson, 1967). Mo $K \alpha$ radiation was used with a Zr filter to collect data for 1104 reflections in the range $0^{\circ}<2 \theta \leq 60^{\circ}$. Lorentz and polarization corrections were applied to both sets of data. Absorption corrections, based on the crystal's approximately rectangular prismatic shape

[^0]: *Work was performed in the Ames Laboratory of the U.S. Atomic Energy Commission. Contribution No. 2357
 \dagger Present address: Institute of Inorganic and Physical Chemistry, University of Stockholm, Sweden.

[^1]: * A total listing of $F_{\text {obs }}$ and $F_{\text {calc }}$ for the anisotropic refinement will be furnished upon request.

